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ABSTRACT
The human hippocampus is a key region in cognitive and emotional processing, but also a vulnerable and plastic region. 
Accordingly, there is a great interest in understanding how variability in the hippocampus' structure relates to variability in 
behavior in healthy and clinical populations. In this study, we aimed to link interindividual variability in subregional hippocam-
pal networks (i.e., the brain grey matter networks of hippocampal subregions) to variability in behavioral phenotype. To do so, 
we used a multiblock multivariate approach mapping the association between grey matter volume in hippocampal subregions, 
grey matter volume in the whole brain regions, and behavioral variables in healthy adults. To ensure the robustness and gen-
eralizability of the findings, we implemented a cross-cohort discovery and validation framework. This framework utilized two 
independent cohorts: the Human Connectome Project Young Adult (HCP-YA) cohort and the Human Connectome Project Aging 
(HCP-A) cohort, enabling us to assess the replicability and generalizability of hippocampal–brain–behavior phenotypes across 
different age groups in the population. Our results highlighted a left anterior hippocampal morphological network including the 
left amygdala and the posterior midline structures whose expression relates to higher self-regulation, life satisfaction, and better 
performance at standard neuropsychological tests. The cross-cohort generalizability of the hippocampus–brain–behavior map-
ping demonstrates its relevance beyond a specific population sample. Our previous work in developmental populations showed 
that the hippocampus' head co-maturates with most of the brain during childhood. The current data-driven study further sug-
gests that grey matter volume in the left hippocampal head network would be particularly relevant for self-regulation abilities in 
adults that influence a range of life outcomes. Future studies should thus investigate the factors influencing the development of 
this morphological network across childhood, as well as its relationship to neurocognitive phenotypes in various brain diseases.
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1   |   Introduction

The hippocampus is a key region in cognitive and emo-
tional processing, but also a vulnerable and plastic region. 
Accordingly, there is a great interest in understanding how 
variability in the hippocampus' structure relates to variabil-
ity in behavior in healthy and diseased human populations. 
Although many previous studies have reported mapping be-
tween the hippocampus' morphometry and specific behav-
ioral performance or traits, such one-to-one mapping was 
shown to be affected by replicability issues (Genon, Eickhoff, 
and Kharabian, 2022; Kharabian Masouleh et al. 2019, 2022; 
Kharabian Masouleh et  al.  2022). For example, Clark et  al. 
recently showed that relationships between hippocampal vol-
ume and cognitive performance could hardly be evidenced in 
a sample of healthy adults of moderate size although many 
studies in the past have reported specific associations (Clark 
et  al.  2020). To understand this issue, several limitations of 
the usually taken approaches have to be considered in light of 
current conceptual and methodological considerations about 
brain organization and brain–behavior relationships.

First, it is now widely acknowledged that the hippocampus 
is a heterogeneous region integrated into several functional 
systems, subserving different behavioral phenotypes (Genon 
et  al.  2021; Genon et  al.  2018; Plachti et  al.  2019). This en-
gagement typically varies across the anterior–posterior 
axis (Plachti et  al.  2019; Kharabian Masouleh et  al.  2020). 
Generally, anterior hippocampal regions (“hippocampus' 
head”) appear functionally coupled with a self-centric sys-
tem, while posterior regions are more engaged in an action-
oriented system (Genon et al. 2021; Plachti et al. 2019; Maleki 
Balajoo et al. 2023). These patterns can be observed in func-
tional connectivity data from fMRI (see (Plachti et al. 2019)), 
but also in co-morphology between brain regions as studied 
with structural covariance in grey matter volume (Plachti 
et  al.  2019, 2020; Plachti et  al.  2020; Kharabian Masouleh 
et al. 2020). In that regard, our recent work has suggested that 
the anterior hippocampus co-maturates with most of the brain 
in childhood, while the posterior hippocampus covaries with 
cortical development at later developmental stages, starting 
mainly in adolescence (Plachti et al. 2023). Accordingly, the 
expression of a given behavioral phenotype in an individual 
will depend on the structural/morphological pattern of differ-
ent subregional hippocampal–brain networks.

Second, brain–behavior relationships are typically multivar-
iate and this would be particularly the case for highly con-
nected regions such as hippocampal subregions. Since, as 
aforementioned, grey matter volume in each hippocampal 
subregion covaries with a range of other brain regions across 
individuals, considering the whole morphological (i.e., grey 
matter covariance) network in association with behavior may 
be conceptually more enlightening and methodologically 
more powerful than searching for specific associations be-
tween grey matter volume within the hippocampus and be-
havioral variables. Furthermore, it appears from activations 
studies that hippocampal subregions are engaged in a range 
of behavioral paradigms, thus a range of behavioral variables 
could be considered when aiming to relate hippocampal grey 
matter networks to behavioral measurements. Additionally, 

from a psychometric data standpoint, any single behavioral 
measure or outcome (e.g., working memory performance) is 
typically correlated with a range of other behavioral aspects 
(e.g., personality, cognitive control, etc.), hence reflecting 
only a very partial aspect of the behavioral phenotype when 
taken in isolation. To capture the large spectrum of the behav-
ioral phenotypes (i.e., a global behavioral pattern spanning 
cognition, emotion, and socio-affective aspects) associated 
with brain structural features, such as here hippocampal 
subregional and brain grey matter volume, multivariate ap-
proaches are required (Genon, Eickhoff, and Kharabian, 2022; 
Nicolaisen-Sobesky et al. 2022). Third, any type of association 
between brain markers and behavioral markers (be it bivar-
iate or multivariate) found in a sample/subsample is highly 
likely to result in a replicability failure when investigated in 
another sample/subsample. Accordingly, a cross-validation 
scheme and a very large sample size are required (Genon, 
Eickhoff, and Kharabian, 2022). Finally, the pattern of asso-
ciations between interindividual variability in brain structure 
and interindividual variability in behavior even when evi-
denced in a large sample often fails to replicate when inves-
tigated in a different cohort. In such cases, these association 
patterns can hardly be considered as reflecting general prin-
ciples of brain–behavior associations. Evidencing these later 
requires at least two different cohorts with similar measure-
ments, a requirement that has been particularly difficult to 
fulfill so far (Genon, Eickhoff, and Kharabian, 2022) and has 
thus hindered our understanding of associations between the 
hippocampal–brain structural phenotype and the behavioral 
phenotype.

Our study addresses these limitations by employing a brain–
multiblock multivariate mapping approach (Caplan, McIntosh, 
and De Rosa 2007; Chiang, Wang, and McKeown 2012) em-
bedded in a machine learning framework to identify repli-
cable multivariate patterns of covariance between different 
hippocampal subregion structures, whole brain structure, 
and behavioral phenotypes in population cohorts. Unlike 
previous studies, this approach allows us to consider the co-
variance among multiple hippocampal subregions and other 
brain regions in relation to diverse behavioral variables. This 
holistic approach allows us to identify and summarize com-
plex patterns of hippocampal–brain–behavior relationships 
in a two-dimensional latent space. Therefore, this approach 
does not consider hippocampal subregions only in relation 
to behavioral phenotype, but it captures patterns of hippo-
campal–brain morphological covariance that in turn relates 
to behavioral phenotypes. By implementing a cross-cohort 
discovery and validation framework using two independent 
cohorts: HCP-YA cohort and HCP-A cohort, we could further 
assess the replicability and generalizability of hippocampal–
brain–behavior phenotypes across different age groups in the 
population. This contrasts with past studies that often suffer 
from replicability issues due to smaller sample sizes and less 
comprehensive methodologies. Moreover, we here included a 
broad spectrum of behavioral variables, spanning different 
cognitive functions or domains (executive functions, working 
memory, language, fluid intelligence, …) and socio-affective 
aspects (emotion, affects, well-being, social relationships, 
stress, …) to capture a more complete picture of the behavioral 
phenotypes associated with hippocampal morphology. This 
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comprehensive approach allows us to uncover specific hippo-
campal subregion–brain–behavior patterns that might be ob-
scured in studies with a narrower focus.

2   |   Methods and Materials

2.1   |   Dataset

We employed two large cohorts from the Human Connectome 
Project (HCP): the HCP Young Adult (HCP-YA, S1200 release 
(Van Essen et  al.  2013)) and the HCP in Aging (HCP-A, 2.0 
release (Bookheimer et al. 2019)). While the HCP-YA cohort 
serves as a comprehensive resource for investigating brain–
behavioral patterns in healthy young adults, offering a di-
verse array of behavioral measurements, the HCP-A cohort, 
was chosen for its alignment with the HCP-YA in behavioral 
assessments and neuroimaging protocols, but spanning a 
broader age range than the HCP-YA (Harms et  al.  2018). 
The common behavioral measures across both cohorts offer 
the unique opportunity to investigate the replicability of the 
brain–behavior latent dimensions.

2.2   |   Participants

2.2.1   |   Human Connectome Project Young Adult

The HCP-YA cohort comprises neuroimaging and behavioral 
data from 1206 participants aged 22–37. Derived from 457 fam-
ilies, including twins, and non-twins, the final sample of 1047 
participants (560 females, mean age = [28.78 ± 3.67] years) un-
derwent thorough data quality examinations for structural scans, 
processing errors, and incomplete data (Table 1).

2.2.2   |   Human Connectome Project in Aging

The HCP-A cohort includes 725 unrelated healthy adults aged 
36–100. After exclusions of some participants for technical is-
sues, processing errors, and incomplete behavioral data, the 
final sample consists of 601 participants (353 females, mean age 
= [58.5 ± 14.9] years; Table 1).

2.3   |   Behavioral Data

Both cohorts underwent behavioral assessments covering emo-
tion, cognition, sleep, episodic memory, executive functions, 
language, processing speed, self-regulation/impulsivity, work-
ing memory, emotion recognition, negative affect, psychological 
well-being, social relationships, and stress/self-efficacy. The 32 
selected behavioral variables, free of missing values and shared 
across cohorts, are detailed in (Table S1). Emotion recognition 
reaction time values (variable ER40_CRT) were uniformly ad-
justed for interpretability.

2.4   |   Neuroimaging Data Acquisition

The HCP-YA cohort's neuroimaging data were obtained using a 
customized 3 T Magnetic Resonance Siemens Skyra “Connectom” 
scanner at Washington University in St. Louis, United States 
(Van Essen et  al.  2013; Elam et  al.  2021). T1-weighted images 
utilized a 3D MPRAGE sequence (TR = 2400 ms; TE = 2.14 ms; 
TI = 1000 ms; voxel size = 0.7 mm isotropic).

In the HCP-A cohort, neuroimaging data were acquired on stan-
dard Siemens 3 T Prisma scanners at four US sites: Washington 
University in St. Louis, University of California-Los Angeles, 

TABLE 1    |    Demographic characteristics of the used adult cohorts.

HCP-YA HCP-A

(Van Essen et al. 2013) (Bookheimer et al. 2019)

Number of subjects (N) 1047 601

Age 28.78 ± 3.67 58.5 ± 14.9

Gender (female) 560 353

Behavioral domains •  Emotion
•  Cognition

•  Sleep
•  Episodic memory

•  Executive functions
•  Language

•  Processing speed
•  Self-regulation/impulsivity

•  Working memory
•  Emotion recognition

•  Negative affect
•  Psychological well-being

•  Social relationships
•  Stress/self-efficacy

Confounding variables Age, Age2, and gender
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University of Minnesota, and Massachusetts General Hospital 
(Harms et  al.  2018). Common neuroimaging protocols were 
applied across sites (Bookheimer et al. 2019), with T1-weighted 
images acquired using multi-echo MPRAGE sequences 
(TR = 2500 ms; TI = 1000 ms; TE = 1.8/3.6/5.4/7.2 ms; voxel 
size = 0.8 mm isotropic).

2.5   |   Neuroimaging Data Preprocessing

Both cohorts' T1-w anatomical images underwent processing 
with the Computational Anatomy Toolbox version 12.5 to com-
pute estimates of grey matter volume (Gaser CaK 2021). After 
normalization and segmentation steps, grey matter segments 
were modulated for non-linear transformations and smoothed. 
Subsequently, they were parcellated using the Schaefer atlas for 
200 cortical regions (Schaefer et  al.  2018) and the Melbourne 
subcortex atlas for 32 subcortical regions (Tian et  al.  2020). 
Overlapping voxels between the subcortical atlas and the corti-
cal atlas were nullified in the cortical atlas to prevent artificial 
correlations.

2.6   |   Hippocampal Subregions

Hippocampal subregional volumes in young, middle-aged, 
and elderly populations were delineated in our prior research 
(Plachti et al. 2020) using a data-driven parcellation approach 
based on the structural covariance pattern across structural 
MRI data of six large cohorts (n = 2594). The subregions were 
hence delineated based on their distinct brain co-morphology 
pattern (resulting from co-plasticity, coordinated matura-
tion, etc.). This previous work revealed a stable tripartite 
subdivision which highlighted a very similar pattern for the 
young, middle-aged, and elderly group, suggesting a stable 
pattern of hippocampal differentiation based on brain grey 
matter covariance across the life span. In the current study, 
we used the three-cluster solution derived from young adult 
cohorts which is openly available on ANIMA (https://​anima.​
fz-​jueli​ch.​de/​studi​es/​Plach​ti_​Demen​tiaHi​ppoca​mpus_​2020; 
(Reid et  al.  2016)) (Figure  1). In this previous parcellation, 
we highlighted that, in the healthy brain, the hippocampal 
macrostructure can be discretely categorized along the ante-
rior–posterior axis into an anterior (head) subregion and two 
posterior (body and tail) subregions (one lateral and one me-
dial subregions). These two latter subregions (posterior lateral 
and posterior medial) mirror the underlying cytoarchitecture 
and are accordingly referred to as “posterior CA” and “poste-
rior subiculum” subregions, respectively. Overlapping parcels 
between the subcortical atlas and the hippocampal volume 
including hippocampus-related parcels were nullified in the 
subcortical atlas to prevent artificial covariance patterns be-
tween hippocampal seeds and brain parcels.

2.7   |   Multivariate Statistical Analysis

In this study, we were interested in linking three matrices: 
subregional hippocampal grey matter volume (seed data), 
brain parcel grey matter volumes, and behavioral variables. 
As mentioned earlier, to avoid spurious covariance patterns, 

hippocampus-related parcels were excluded from the brain 
parcel set. Examining the relationships between these three 
matrices requires a multivariate approach. Partial least 
squares correlation (PLS) methodology (Krishnan et al. 2011) 
and Canonical Correlation Analysis (CCA) techniques 
(Mihalik et al. 2022) represent advanced multivariate statisti-
cal tools tailored for exploring the relationship between brain 
markers/features (such as regional grey matter volumes) 
and other features or measurements (such as behavioral out-
comes). Such multivariate approaches can also be used to ex-
plore multivariate covariance between features in one part 
of the brain (e.g., regional grey matter within hippocampal 
voxels or subregions) and features in other parts of the brain 
(e.g., grey matter volume in the cortex). This latter approach 
is known as a “seed-PLS”’ approach (Krishnan et  al.  2011; 
Guo et al. 2020; Nordin et al. 2018). While PLS and CCA are 
typically used for joint analysis of two matrices (i.e., brain 
features and behavioral measurements), our study extends 
this approach to accommodate three matrices, highlighting 
the complexity of our analysis. For this purpose, we imple-
mented a brain–multiblock design (Caplan, McIntosh, and 
De Rosa  2007; Chiang, Wang, and McKeown  2012) aiming 
to explore relationships between subregional hippocampal 
grey matter volume (seed data), whole-brain parcel grey mat-
ter volumes, and behavioral variables. The brain–multiblock 
design provides a comprehensive framework for exploring 
complex relationships.

In this study, the brain–multiblock design, where brain–be-
havior and brain–seed analysis were combined together, 
converged to reveal latent dimensions (Figure  1). These la-
tent variables capture the optimal relationship between the 
structural covariance pattern of seed regions and other brain 
regions across participants. Simultaneously, they assess how 
these grey matter patterns covary with behavioral outcomes. 
In each latent dimension, each participant has a brain score 
which is calculated to measure how strongly the covariance 
pattern is expressed in that particular participant. Meanwhile, 
each voxel/subregion has a positive or negative loading that 
represents its contribution to the pattern described by the la-
tent dimension. Besides, in each latent dimension, every par-
ticipant has a multiblock score which is calculated to measure 
how strongly these covariance patterns are related to behav-
ior in that particular participant. Meanwhile, each multiblock 
variable has a positive or negative loading that represents its 
contribution to the pattern described by the latent dimension. 
By extracting latent dimensions, the variability that exists in 
the population in subregional hippocampal–brain–behavior 
patterns can be represented in a two-dimensional space in 
which the position of any individual represents the extent to 
which they express a given subregional hippocampal–brain–
behavior pattern (Figure 1).

2.8   |   Discovery–Validation Framework

To ensure the robustness and generalizability of the find-
ings, we implemented a discovery–validation framework 
using two independent cohorts: HCP-YA cohort and HCP-A 
cohort (Figure 2). In the discovery phase, we identified the 
relations between interindividual variability in subregional 
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hippocampal networks and variability in behavioral phe-
notype within the discovery cohort by developing a CCA 
model. Then, in the validation phase, these findings were 

tested on an independent cohort (validation cohort) to con-
firm their generalizability, without adjusting the model or 
parameters.

FIGURE 1    |     Legend on next page.
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2.9   |   Primary Analysis: Discovery Phase

In the primary analysis, we selected the HCP-YA cohort as the 
discovery cohort for identifying associations between subre-
gional hippocampal grey matter volume (seed data), brain par-
cel grey matter volumes, and behavioral variables. To identify 
latent dimensions within a brain–multiblock design, we applied 
CCA to three sets of features: regional hippocampal grey matter 
volume (seed data), brain parcel grey matter volumes, and be-
havioral variables.

2.10   |   Canonical Correlation Analysis

The canonical correlation analysis (CCA) model received in-
puts in the form of a brain matrix denoted as X and a mul-
tiblock matrix represented as Y, comprising a concatenation 
of seed data and behavioral data (Figure  1). CCA identifies 
brain weights (u) and multiblock weights (v), which describe 

linear combinations of the variables in X and Y, respectively 
(Krishnan et al. 2011; Mihalik et al. 2022). These weights can 
be interpreted as a quantification of how much each origi-
nal variable contributes to the latent dimension (Krishnan 
et al. 2011; Mihalik et al. 2022). This model selects the weights 
to maximize the canonical correlation, which corresponds to 
the correlation of the brain scores (Xu) with the multiblock 
scores (Yv) (Krishnan et  al.  2011; Mihalik et  al.  2022). As 
mentioned earlier, these scores can be interpreted as a quanti-
fication of how the latent dimension is expressed in each par-
ticipant. Notably, in this study, we specifically implemented 
regularized CCA (RCCA) to counteract overfitting, employ-
ing L2-norm constraints and controlling regularization pa-
rameters (cx and cy). The RCCA models were trained and 
evaluated using a machine learning framework with nested 
cross-validation, consisting of 5 outer splits and 5 inner splits 
(Figure 2). In the outer splits, the data is partitioned into op-
timization and test sets, while within the inner splits, the op-
timization set is further divided into training and validation 

FIGURE 1    |    Overview of the brain–multiblock design and analysis framework. Matrix X represents parcellated whole-brain grey matter volumes 
(except parcels related to bilateral Hippocampus) with dimensions N × P, where N is the sample size and P is the number of whole-brain parcels. 
Matrix Y with dimensions N × R represents the concatenation of hippocampal subregions (B) and behavioral variables, where N is the sample size 
and R is the total number of hippocampal subregions and behavioral variables. Canonical correlation analysis is utilized to identify brain weights (u) 
and multiblock weights (v), representing linear combinations of variables in matrices X and Y, respectively. Projecting the original data X and Y onto 
these weights yields scores (Xu and Yv). The model optimizes weights to maximize canonical correlation (i.e., effect size), typically reported with 
Pearson's correlation between brain scores and multiblock scores. This correlation is depicted as a latent dimension, with each point representing one 
participant. Variable loadings are derived based on the correlation between the (original) variables and the canonical variate. Loadings here hence 
reflect the correlation between original variables in X and Y and brain and multiblock scores, respectively. The figure highlights how latent dimen-
sions are extracted and interpreted.

FIGURE 2    |    Cross-Cohort Discovery and Validation Framework. This framework used two independent cohorts: HCP-YA cohort and HCP-A 
cohort as Discovery and Validation cohorts interchangeably to ensure the robustness and generalizability of the findings. Regularized canonical 
correlation analysis (RCCA) models were trained and evaluated on the discovery cohort using a machine learning framework with nested cross-
validation, consisting of five outer splits and five inner splits. In the outer splits, the data is partitioned into optimization and test sets, while within 
the inner splits, the optimization set is further divided into training and validation sets. This meticulous division aims to enhance the precision of 
the model through hyperparameter tuning, model selection, and statistical evaluation. After selecting the best model based on highly significant 
canonical correlation, the canonical weights (computed in the discovery phase) were used to project the data in the validation onto the identified 
latent dimensions. This allowed us to assess whether the relationships identified in the discovery cohort between variables could be replicated in the 
validation cohort.
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sets. This meticulous division aims to enhance the precision of 
the model through hyperparameter tuning, model selection, 
and statistical evaluation. During the cross-validation pro-
cess, age, age-squared, gender, and total intracranial volume 
(TIV) as a proxy for brain size were regressed out from both 
brain and multiblock variables to enhance the robustness of 
the model in a fashion avoiding leakage between the train-
ing and test sets (i.e., procedures for de-confounding the data 
were estimated on the training set and applied to the valida-
tion and test sets). In the case of HCP-YA, the splitting was 
done respecting the family structure. Within the nested cross-
validation procedure, performed through the inner splits 
(optimization sets), RCCA models with varying regulariza-
tion parameters were fitted to the training sets. The combi-
nation that yielded the highest test canonical correlation and 
stability was then selected as the best model. Moving to the 
outer splits (test sets), the generalizability of the model was 
assessed. Here, we focused exclusively on latent dimensions 
that show significant correlations in all outer splits. The sig-
nificance of the latent dimensions was assessed as described 
in the next section. To interpret the significant latent dimen-
sions, we computed and visualized loadings. Brain loadings 
are derived by correlating the original brain variables (X) 
with the brain scores (Xu). Similarly, multiblock loadings are 
computed by correlating the original multiblock variables (Y) 
with the multiblock scores (Yv). These loadings reveal which 
brain and multiblock variables are more strongly associated 
with the latent dimension. In CCA analysis, multiple latent 
dimensions can be sequentially extracted from the data, al-
lowing us to distinguish between general and specific patterns 
of hippocampal–brain–behavior relationships. The first latent 
dimension typically captures a general pattern of covariance 
between hippocampus grey matter volume–brain grey matter 
volume and behavior. Such global pattern is generally driven 
by broad factors (e.g., some individuals have generally higher 
grey matter volume across the brain and better cognitive per-
formance), accordingly, they are rarely of interest for disen-
tangling brain–behavior relationships, and they obfuscate the 
identification of specific hippocampal subregion–brain–be-
havior associations patterns. Upon identifying a significant la-
tent dimension, its variance was systematically removed from 
the data through a deflation process, as outlined by (Mihalik 
et al. 2022). Subsequently, to this deflation step, we sought an-
other latent dimension. The approach used here allows us to 
investigate the more specific hippocampal subregion–brain–
behavior association patterns after removing the variance ex-
plained by the first (non-informative) latent dimension. The 
significance of the latent dimensions was evaluated using the 
procedures detailed in the following section.

2.11   |   Statistical Evaluation of Latent Dimensions 
in the Discovery Phase

The significance of latent dimensions was determined through 
permutation tests involving 1000 iterations, wherein rows (i.e., 
the order of the subjects) of the Y matrix were shuffled to remove 
the associations between X and Y data. For HCP-YA, the shuf-
fling considered the family structure of the data. We then fit the 
RCCA models with the optimal regularization parameter (ob-
tained from the original data [i.e., unpermuted]) and projected 

the permuted test set onto the resulting weight vectors, and the 
canonical correlation was calculated. p values were computed 
as the percentage of iterations where the canonical correlations 
obtained from the permuted test set were as extreme as or more 
extreme than the original canonical correlation derived from 
the original test set. Multiple statistical testing was accounted 
for by using Bonferroni correction for multiple comparisons (5 
outer splits).

2.12   |   Out-of-Cohort Validation Phase in 
Primary Analysis: Cross-Cohort Replicability 
and Generalizability of Latent Dimensions

To ensure that the latent dimensions identified in the discov-
ery phase were not cohort-specific, we validated the findings 
by projecting the brain and multiblock variables from the val-
idation cohort (HCP-A) onto the identified latent dimension in 
the discovery cohort by multiplying them with the multiblock 
and brain canonical weights estimated in HCP-YA (Figure  2). 
Hence, we tested the generalizability of the latent dimensions 
across an older adult population (HCP-A) by assessing to which 
extent the model identified in the younger cohort fits the data of 
an older cohort. This projection allowed for the calculation of 
canonical correlations in the validation cohort using the latent 
space obtained from the discovery phase. The canonical correla-
tion serves here as an effect size: the greater the magnitude of 
the canonical correlation, the better the fit of the latent space 
to the new cohort. As the age range of two cohorts is different, 
for de-confounding we could not use the de-confounding re-
gressors that were estimated on the training set within the dis-
covery cohort. So, we randomly selected 200 subjects from the 
validation cohort (HCP-A; validation dataset 1) to estimate the 
confound regressors and applied them for de-confounding to the 
rest of the subjects in validation dataset 2 (Figure 2). To assess 
whether the brain-loading spatial maps in the validation cohort 
overlapped with those of the discovery sample, we the two sets 
of loadings and tested the significance of these correlations 
using partial correlation adjusted for spatial distribution of grey 
matter. Finally, to investigate the similarity of the multiblock 
loading in the validation and discovery cohorts we performed a 
Pearson correlation analysis.

2.13   |   Statistical Evaluation of Latent Dimensions 
in the Validation Phase

Similar to what is done in the discovery phase, the significance of 
the latent dimension was determined through permutation tests 
involving 1000 iterations, wherein rows of the Y matrix were 
shuffled independently within the optimization set from the dis-
covery cohort and validation dataset 2 (Figure 2). For HCP-YA, 
the shuffling considered the family structure of the data.

We then fit the RCCA models with the optimal regularization 
parameter (obtained from the original data in the discovery co-
hort (i.e., unpermuted)) and projected the permuted validation 
dataset 2 onto the resulting weight vectors, and the canonical 
correlation was calculated. p values were computed as the per-
centage of iterations where the canonical correlations obtained 
from the permuted validation dataset 2 were as extreme as or 
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more extreme than the original canonical correlation derived 
from the original validation dataset 2.

2.14   |   Replication Analysis

To further strengthen the generalizability of the findings, we per-
formed a replication analysis by reversing the roles of the discov-
ery and validation cohorts. This additional step ensured that the 
relationships identified between subregional hippocampal grey 
matter volume (seed data), brain parcel grey matter volumes, and 
behavioral variables were robust across both age groups.

In the replication analysis, the HCP-A cohort served as the dis-
covery cohort. RCCA was applied to identify latent dimensions 
between subregional hippocampal grey matter volume (seed 
data), brain parcel grey matter volumes, and behavioral vari-
ables in the older adult population. The canonical weights de-
rived from the HCP-A cohort were then applied to the HCP-YA 
cohort, and canonical correlations were recalculated in the 
younger cohort using the projected data. This allowed us to as-
sess whether the latent dimensions identified in the older cohort 
replicated in the younger cohort. Here, we used the same ap-
proach for de-confounding the validation dataset as described 
in the previous section and Figure 2.

3   |   Results

This study focused on investigating the association between the 
morphological network of hippocampal subregions and behav-
ior. Utilizing a multiblock design that concatenated seed and 
behavioral data, we employed hippocampal subregions defined 
in a prior study (Plachti et al. 2020). In this prior work, the hip-
pocampal macrostructure was delineated into three subregions 
along the anterior–posterior axes in the healthy brain. Measures 
of mean grey matter volume from these subregions served as 
seed data, alongside 32 carefully selected behavioral variables 
spanning alertness, cognition, and emotion (S1 Table), creating a 
multiblock cohort. The chosen behavioral variables covered rel-
evant phenotypes, were available in both cohorts (HCP-YA and 
HCP-A), and were devoid of missing data. The set of brain struc-
tural features included parcelwise measures of mean grey matter 
volume across 232 cortical and subcortical parcels. Age, age-
square, gender, and TIV as a proxy for brain size were regressed 
out from both the brain and multiblock variables in a fashion 
preventing train-test leakage. We implemented a cross-cohort 
discovery and validation framework for ensuring the robustness 
and generalizability of the latent dimensions on the designed 
brain–multiblock. The RCCA was applied to the discovery cohort 
as embedded in a machine learning framework, incorporating 
nested cross-validation for identifying stable latent dimensions.

As mentioned earlier, we focused exclusively on latent dimen-
sions where all outer splits exhibited significant canonical 
correlation. Thus, we found four significant latent dimensions 
when using HCP-YA as the discovery cohort and all identified 
latent dimensions appeared as generalizable in the older co-
hort (HCP-A) as the validation cohort. However, in replication 
analysis, when HCP-A was the discovery cohort, we only cap-
tured two significant latent dimensions and both of them were 

generalizable in the younger cohort (HCP-YA) as the validation 
cohort. The first two latent dimensions appear as replicable hip-
pocampal–brain–behavior phenotypes across cohorts with dif-
ferent age groups.

In the discovery phase, the first latent dimension in both pri-
mary analysis and replication analysis represents the general 
covariance pattern between the whole hippocampus, the whole 
brain, and behavioral measures (see Figures S1–S3). Upon de-
flating this general covariance pattern, we observe hippocampal 
subregional differentiation in the brain and phenotypical cova-
riance in the subsequent latent dimension (the second latent di-
mension). For both analyses, this latent dimension highlights a 
left hippocampus head (vs. all other hippocampal subregions) 
positive covariance pattern in the brain with a specific range of 
behavioral variables. Consequently, in the following section, we 
focus on the second latent dimension, while other latent dimen-
sions are further described in the Supporting Information (see 
Figures S1–S5 and Tables S2–S3). Our out-of-cohort validation 
phase analyses further enable us to examine the generalizability 
of latent dimensions when applied to a new cohort independent 
from the cohort in which it has been discovered/modeled. It is 
noteworthy that, according to our supplementary analyses, our 
results do not seem to be influenced by potential spurious ef-
fects of the scanning site in the HCP-A cohort (see Supporting 
Information for details, Figure S6).

3.1   |   Discovery Phase: Second Latent Dimension 
in HCP-YA Cohort

In discovery phase of primary analysis, the second latent dimen-
sion (Figure 3) highlighted a left hippocampus head positive cova-
riance pattern with grey matter volume in the left amygdala, the 
bilateral thalamus, the bilateral temporoparietal cortices, the left 
posterior globus pallidus, the left auditory cortex, the left precu-
neus and posterior cingulate cortex, the right precuneus, the right 
retrosplenial, and the right frontal eye-field. Negative covariance 
(brain negative loadings) appeared mainly in the right amygdala 
and the right posterior putamen, caudate, and globus pallidus. In 
the CCA, this regional–hippocampal–brain covariance pattern 
demonstrated positive associations at the behavioral level with 
self-regulation and efficiency, life satisfaction, language process-
ing, and sustained attention abilities. In contrast, it was negatively 
correlated with sleep problems, aggressive behavior, stress, hostil-
ity/cynicism, attention problems, and cognitive flexibility.

In other words, participants showing relatively higher grey mat-
ter volume in the left hippocampus head's (but relatively lower 
in the right hippocampus head and bilateral hippocampal pos-
terior regions) morphological network also display relatively 
higher self-regulation and efficacy, life satisfaction, and sus-
tained attention abilities, along with lower levels of aggressive 
behavior, stress, hostility/cynicism, and attention problems, but 
also lower cognitive flexibility. Conversely, participants with 
relatively higher grey matter volume in the right hippocampus 
head and more posterior hippocampal regions show higher grey 
matter volume in the right amygdala and the right posterior 
putamen, caudate, and globus pallidus. These individuals ex-
hibit lower self-regulation abilities, higher aggressivity/hostility, 
and cynicism, but also higher stress and more sleep problems.
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3.2   |   Validation Phase: Testing the Latent 
Dimension in HCP-A Cohort

In the validation phase, we tested the replicability and generaliz-
ability of identified latent dimensions in HCP-YA using an inde-
pendent sample (HCP-A). In each latent dimension, the weights 

derived from the HCP-YA sample were used to estimate canoni-
cal correlation and Multiblock and brain loadings in the HCP-A 
sample. The magnitude of the canonical correlation indicates the 
extent to which the model (the modeled latent dimension and thus 
latent space) fits the data. The significant canonical correlation ob-
served in the validation cohort, when projected onto the weight 

FIGURE 3    |    Second latent dimension: Discovery cohort (HCP-YA) and Validation cohort (HCP-A). (A) Multiblock loadings; (B) Brain grey matter 
volume loadings. Both loadings were primarily used for interpreting how variables in the multiblock data and whole brain grey matter volume con-
tributed to the identified second latent dimension A. Dark and light colors represent loadings for the discovery and validation cohorts, respectively. 
The loadings are calculated for the best model based on high effect size (canonical correlation) across five outer splits. The color-map bars illustrate 
multiblock variables associated with various domains such as alertness, cognition, emotion, and hippocampal subregions. (B) Cortical and subcorti-
cal patterns of brain loadings are shown separately for visualization purposes. Thresholding was applied in the brain loadings cortical maps purely 
for visualization purposes to highlight key contributing regions. It was not based on any statistical criteria and does not reflect significance. The 
subcortical slice corresponds to MNI coordinates: 19, −5, 0. In both cortical and subcortical maps, red indicates positive loadings and blue indicates 
negative loadings.
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vectors derived in the discovery phase, served as an indicator of 
the model's generalizability. In Figure 4A, we showed a canoni-
cal correlation of the second latent dimension (i.e., effect sizes) in 
both discovery and validation cohorts. In the primary analysis, the 
effect size of the significant canonical correlation for the second 
latent dimension in the discovery cohort (HCP-YA) was 0.72 and in 
the validation cohort (HCP-A) was 0.48. Comparing their loadings, 
we found strong positive correlations between the two samples 
(r = 0.69, pcorr < 0.001 and r = 0.70, pcorr < 0.001 for multiblock and 
brain, respectively; see Figure 3B for brain loading the correlation 
adjusted for the auto-spatial correlation of the brain data). In the 
validation cohort (HCP-A) (Figure 3), the left hippocampus head 
also showed a positive covariance pattern with grey matter vol-
ume in the left amygdala and a negative covariance pattern with 
the right amygdala, bilateral posterior caudate, and right globus 
pallidus. However, the left hippocampus head in the aging cohort 
highlighted positive covariance with overall the bilateral cerebral 
cortex, but that was the highest in the cortical regions highlighted 
in the HCP-YA including the bilateral temporo-parietal, the left 
auditory cortex, the left precuneus, and the posterior cingulate 
cortex, the right precuneus, the right retrosplenial, and the right 
frontal eye-field. This analysis revealed that projecting HCP-A data 
to the second latent dimension identified by HCP-YA preserves the 
multivariate patterns of covariance between the left hippocampus 
head, whole brain structure, and behavioral phenotypes. As the 
measured behavioral and imaging data were similar between the 
two cohorts, this out-of-cohort validation constitutes a test of the 
true validity of the brain–behavior relationship.

3.3   |   Replication by Swapping Discovery 
and Validation Cohorts

When the mapping between hippocampal subregions, other brain 
regions, and behavioral variables was explored in the HCP-A as 

a discovery cohort, a similar latent dimension (as found in the 
HCP-Y) was found (Figure 5) showing a left hippocampus head 
(vs. right hippocampal head and posterior subregions) positive co-
variance pattern with grey matter volume in the left amygdala and 
overall the bilateral cerebral cortex, but that was the highest in the 
dorsal/lateral prefrontal cortex, the middle and posterior cingulate 
cortex/precuneus, Intraparietal sulcus, inferior parietal lobule, 
and superior/parieto-occipital cortex. Negative covariance (brain 
negative loadings) appeared mainly in the right amygdala and 
right putamen, and right posterior globus pallidus. In the CCA, 
this regional–hippocampal–brain covariance pattern was posi-
tively associated at the behavioral level with language processing, 
working memory, executive functions, self-regulation, life satisfac-
tion, self-efficacy, processing speed, episodic memory, and the use 
of instrumental support. In contrast, it was negatively correlated 
with sleep latency and poor sleep quality.

In other words, older participants with relatively higher grey 
matter volume in the left hippocampus head (but relatively 
lower in the right hippocampus head and Cornu Ammonis (CAs) 
areas) tend to exhibit higher grey matter volume in the cerebral 
cortex. Additionally, they display relatively higher short- and 
long-term memory abilities, self-regulation and efficacy, life sat-
isfaction, and higher executive functions as well as better sleep 
quality. However, they also show a tendency toward more sad-
ness. Conversely, older participants with relatively higher grey 
matter volume in the right hippocampus and CAs regions tend 
to exhibit higher grey matter volume in the right amygdala and 
putamen and display lower self-regulation and efficacy, lower 
sleep quality, but also lower sadness.

In the validation phase, we tested the replicability and gener-
alizability of identified latent dimensions in HCP-A using the 
HCP-YA as a validation cohort. Similar to primary analysis, 
in each latent dimension, the weights derived from the HCP-A 

FIGURE 4    |    Cross-cohort replicability and generalizability of the second latent dimension. This figure illustrates the effect sizes of canonical cor-
relations for the second latent dimension in both discovery and validation cohorts. (A) In the primary analysis, using the HCP-YA as the discovery 
cohort, the effect size for the significant canonical correlation was 0.72, while the effect size in the validation cohort (HCP-A) was 0.48. (B) In the rep-
lication analysis, where HCP-A served as the discovery cohort and HCP-YA as the validation cohort, the effect sizes were 0.58 and 0.45, respectively. 
All effect sizes are significant, indicating robust relationships between hippocampal–brain–behavior variability across cohorts.
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sample were used to estimate canonical correlation and multi-
block and brain loadings in the HCP-YA cohort. In the replica-
tion analysis, the effect size of the second latent dimension in 
the discovery cohort (HCP-A) was 0.58 and in the validation co-
hort (HCP-YA) was 0.45 (Figure 3B). Comparing their loadings, 

we found strong positive correlations between the two cohorts 
(r = 0.94, pcorr < 0.001 and r = 0.89, pcorr < 0.001 for multiblock 
and brain, respectively; see Figure 5 for brain loading the cor-
relation adjusted for the auto-spatial correlation of the brain 
data). In this validation cohort (HCP-YA), both multiblock and 

FIGURE 5    |    Second latent dimension in replication analysis: Discovery cohort (HCP-A) and Validation cohort (HCP-YA). (A) Multiblock loadings; 
(B) Brain grey matter volume loadings. Both loadings were primarily used for interpreting how variables in the multiblock data and whole brain grey 
matter volume contributed to the identified second latent dimension A. Dark and light colors represent loadings for the discovery and validation co-
horts, respectively. The loadings are calculated for the best model based on high effect size (canonical correlation) across five outer splits. The color-
map bars illustrate multiblock variables associated with various domains such as alertness, cognition, emotion, and hippocampal subregions. (B) 
Cortical and subcortical patterns of brain loadings are shown separately for visualization purposes. Thresholding was applied in the brain loadings 
cortical maps purely for visualization purposes to highlight key contributing regions. It was not based on any statistical criteria and does not reflect 
significance. The subcortical slice corresponds to MNI coordinates: 19, −5, 0. In both cortical and subcortical maps, red indicates positive loadings 
and blue indicates negative loadings.
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brain loadings were very similar to those found in the discovery 
cohort (HCP-A). This analysis revealed that the relationships 
identified between the grey matter volume of the left hippocam-
pus head, specific cortical and subcortical brain patterns, and 
behavioral variables including self-regulation and efficacy, sleep 
quality, and cognitive ability were overall robust across both age 
groups.

4   |   Discussion

4.1   |   A Stable and Replicable Latent Dimension 
Highlighting the Left Anterior Hippocampus

In this study, we used a data-driven approach across two dis-
tinct cohorts to examine how interindividual variability in 
subregional hippocampal grey matter volume relates to inter-
individual variability in brain grey matter and to interindivid-
ual variability in behavioral measures conjointly. Strikingly, 
we identified a stable, latent dimension associated with the 
left anterior hippocampus' head grey matter network, encom-
passing regions such as the left amygdala and posterior medial 
cortex. Notably, the model capturing variability in the dis-
covery cohort also accounted for variability in the validation 
cohort, demonstrating its generalizability. This consistency 
across independent cohorts suggests that this latent dimen-
sion represents a fundamental, robust structure of hippocam-
pal–brain co-morphology and its association with behavioral 
traits across the population. Several aspects can be noted re-
garding this latent dimension. First, interindividual variabil-
ity in the anterior (head) versus posterior subregions appears 
as different poles of variability in the population, but more 
specifically, the left hippocampus' head structure appears as 
loading in a different direction than its right homolog. Second, 
at the brain level, the left anterior hippocampus' head appears 
particularly morphologically coupled with the left amygdala, 
a region engaged in emotion processing, but also with cortical 
regions, such as the median posterior cortical subregions that 
support high-level, integrative cognitive processes. Finally, 
higher grey matter volume in this network in the healthy pop-
ulation relates to a behavioral phenotype characterized by 
higher self-regulation, but which could also imply lower per-
formance on some specific tests. All these findings are further 
discussed below.

4.2   |   Left (vs. Right) Anterior Hippocampal Brain 
Morphology Network

Our data-driven approach highlights a left hippocampal head 
grey matter network as a stable dimension of interindividual 
variability. Interestingly, the left hippocampus appears specifi-
cally on one pole of the dimension while the right hippocam-
pus' head loads on the other pole of the dimension. This result 
highlights the importance of considering the structural and 
functional hippocampal asymmetry to better understand be-
havioral phenotypes in the healthy and diseased population 
(Genon et al. 2021). Due to the relative weight of animal models, 
in particular rodent models, in the study of hippocampal func-
tion and pathologies and the lack of consideration of left–right 
asymmetry in these models, our understanding of hippocampal 

structural and functional asymmetry and its implication in 
human behavior and brain diseases (such as Alzheimer's dis-
ease, schizophrenia, epilepsy, and anxio-depressive disorders) 
remain relatively limited (Nemati et al. 2023). Yet, the examina-
tion of hippocampal morphometry in humans has suggested vol-
umetric differences between the right and the left hemispheres 
that may be specific to the anterior part of the hippocampus 
(Woolard and Heckers  2012). Furthermore, a right–left global 
hippocampal morphological asymmetry has been often reported 
in the normal aging population and this asymmetry or the right/
left ratio has been generally found to be altered in AD (Geroldi 
et al.  2000; Barnes et al. 2005; Jahanshahi, Naghdi Sadeh, and 
Khezerloo 2023; Poloni et al. 2021). However, in this latter liter-
ature, a common specific asymmetry pattern across studies does 
not appear, possibly because the whole hippocampus was exam-
ined without considering anterior–posterior differentiation. The 
relevance of this subregional differentiation in line with our re-
sults is further discussed in the next section.

At the functional level, the left hemisphere dominance for lin-
guistic functions is generally well known and for the hippocam-
pus, a left dominance for episodic and contextual memory is 
generally put in contrast to a right dominance for spatial nav-
igation (Nemati et  al.  2023). However, beyond these very gen-
eral functional lateralization hypotheses, finer specifications and 
implications thereof for explaining variability in behavioral phe-
notype are missing. Yet, these specifications would contribute to 
better understand clinical profiles including clinical heterogene-
ity. For example, hemispheric and anterior–posterior asymmetry 
have been reported to be significantly more marked in semantic 
dementia atrophy than in AD patients with greater involvement 
of the left and anterior hippocampal subfields in the former (La 
Joie et al. 2013). In this respect, our study indirectly suggests that 
individuals with lower grey matter volume relatively specifically 
in the left hippocampus' head and the left amygdala might show 
lower self-regulation profile and lower performance at tasks 
requiring higher cognitive control, such as working memory, 
inhibition, and language/vocabulary comprehension hence pro-
viding more specific expectations on cognitive alterations that 
may be expected in clinical populations in which the left ante-
rior hippocampal morphological network is affected. In the next 
section, we further discuss the relevance of anterior vs. posterior 
hippocampal morphological networks in relationship to behav-
ioral phenotype.

4.3   |   Left Anterior (vs. Posterior) Hippocampal 
Brain Morphology Network and Self-Regulation

Interestingly, our dimensional approach also identifies more 
specifically the anterior part of the hippocampus as relating 
to this self-regulation phenotype (in contrast to the posterior 
parts of the hippocampus). In that framework, our previous 
study has suggested that the hippocampus' head volume may 
co-maturate with most of the cortical sheet in childhood hence 
participating in the early development of key neurocognitive 
functioning (Plachti et al. 2023), in particular executive func-
tions and high-level conceptual/language skills. Accordingly, 
cortical structural variability in healthy adulthood may covary 
more specifically with anterior hippocampal structural vari-
ability than with posterior hippocampal variability (Woolard 
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and Heckers  2012). Yet, at the functional level, the anterior 
hippocampus is known to be more engaged in self-related 
processes, working closely in interaction with the amygdala 
to process internal information (Genon et  al.  2021; Plachti 
et  al.  2019; Maleki Balajoo et  al.  2023). In that framework, 
our results suggest that individuals with more grey matter 
volume in the anterior hippocampal–cortical network show 
better self-regulation associated with higher self-efficacy 
and life satisfaction. Given the implication in life of such a 
brain–behavior phenotype in adulthood, future studies should 
elucidate how this morphological coupling takes place across 
development (in particular in childhood) and what the expo-
some and genetic factors that influence this left anterior hip-
pocampal network development.

4.4   |   The Left Anterior Hippocampal–Brain 
Morphologic Networks: The Two Sides of the Coin

Our dimensional approach highlights a left anterior hippo-
campal–brain morphologic network whose morphological 
development is associated with self-regulation abilities and per-
forming relatively better in many standard psychometric tests. 
Nevertheless, the multivariate mapping used here also suggests 
that this phenotype could go along with higher cognitive rigid-
ity (lower cognitive flexibility) and possibly more sadness in 
older populations. This pattern of results highlights the com-
plexity of the associations between grey matter volume and be-
havioral phenotype in the population beyond the traditionally 
assumed “the bigger the better” hypothesis (Genon, Eickhoff, 
and Kharabian, 2022). In particular, in anxio-depressive pheno-
type, a higher volume of the amygdala has been frequently re-
ported (Oyarce et al. 2020; Besteher, Gaser, and Nenadić 2020). 
Nevertheless, subregional hippocampal patterns were rarely 
investigated hindering our understanding of the amygdala–hip-
pocampus morphological coupling in aspects of the behavioral 
phenotype that may extend to dysfunction in subclinical and 
clinical populations, such as anxio-depressive disorders.

In our dimension approach, grey matter volume pattern within 
the left anterior hippocampal–brain morphologic networks 
is put in contrast (on the opposite pole) to grey matter volume 
pattern in the right posterior hippocampal and right subcortical 
structures. According to the latent space, individuals who show 
relatively higher grey matter volume within this later morpho-
logical network would show higher cynicism, higher hostility, 
higher sleep latency, and higher stress. Thus, we could specu-
late that higher left anterior–hippocampal–cortical morphology 
goes along with better cognitive control and emotional regula-
tion that participate in performance in standard cognitive par-
adigms, but at the expense of right subcortical volume that is 
associated in some cases with negative behavioral aspects.

In other words, generally, we here speculate that the relative 
expression of a subregional hippocampal–brain pattern relates 
to the relative expression of a behavioral phenotype. More con-
cretely, the structural pattern of left versus right and anterior 
versus posterior hippocampus would be relevant to explain 
the individual behavioral phenotype. In this study, we focused 
specifically on healthy adult populations, and this leads to the 
promotion of a left anterior hippocampo-cortical network going 

along with several positive behavioral aspects. However, more 
extreme structural expression of this pattern might be related to 
lower behavioral performance and to over self-regulation lead-
ing to cognitive rigidity. Nevertheless, evidencing these extreme 
brain-behavior phenotypes would require extended behavioral 
phenotyping in clinical populations in which the hippocampus 
is typically affected, such as anxio-depressive disorders, sleep 
disorders, and autoimmune limbic encephalitis and/or temporal 
lobe epilepsy.

Generally, the multivariate framework linking hippocampal 
networks to behavioral phenotypes in the current study can be 
used to investigate how alterations of these networks relate to 
behavioral symptoms in clinical populations. This insight would 
be particularly useful in disorders in which patients show either 
lower or higher self-regulation together with hippocampal alter-
ations, such as autism spectrum disorder (Banker et al. 2021), 
fetal alcohol spectrum disorders (Popova et al. 2023), and anx-
iety disorders (Lipschutz et al. 2024). Ultimately, future studies 
should contribute to elucidate how the structural and functional 
maturation of the left anterior hippocampal networks during 
childhood play a role in self-regulation disorders.

5   |   Conclusions and Perspectives

In sum, for the first time in this study, we used a multiblock 
multivariate approach to map multivariate associations between 
grey matter volume in hippocampal subregions, grey matter vol-
ume in the brain, and behavioral phenotype. By implementing 
this approach within a machine learning framework, we were 
able to identify stable latent dimensions, and through a cross-
cohort discovery and validation framework, we assessed the 
replicability and generalizability of hippocampal–brain–behav-
ior phenotypes across age groups. We focused on a latent dimen-
sion that was both replicable and generalizable across cohorts, 
suggesting it captures a core aspect of the hippocampal–brain–
behavior phenotype in healthy adults. Our findings highlighted 
a left anterior hippocampal morphological network including 
the left amygdala and posterior midline cortical structure whose 
expression relates to higher self-regulation and better perfor-
mance at standard neuropsychological tests. Future studies 
should investigate the structural development of this morpho-
logical network across childhood and the genetic and exposome 
factors influencing it.

Furthermore, future studies should investigate the extreme ex-
pression of this morphological network in clinical populations 
and how the expression of the hippocampal–brain–behavior 
phenotype in middle-aged adults relates to neurocognitive alter-
ations in older age, in particular in neurodegenerative diseases. 
In line with these perspectives, the approach developed in this 
study is openly available and can be easily applied for future 
studies to investigate hippocampal–brain–behavior phenotype 
in developmental and clinical populations.
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